Code: 19ME4701C

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2022

ROBOTICS AND ITS APPLICATIONS (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1. a)	What is the need for Robots in human endeavor?	L2	CO1
1. b)	Define Jacobian.	L1	CO2
1. c)	What is a Trajectory planning?	L1	CO3
1. d)	What are the types of sensors?	L1	CO4
1. e)	Write down any four applications of robots.	L1	CO5

PART - B

		BL	СО	Max. Marks	
	UNIT-I				
2	Define a Robot. Explain robot components and advantages of a robot.	L2	CO1	12M	
	OR				

3	Define a gripper. Explain types of grippers and advantages of grippers.	L2	CO1	12M	
	8 8 11				
	UNIT-II				
4	Define forward and inverse kinematics of	L3	CO2	12M	
	robot and derive forward kinematic equations				
	for a 2DOF system.				
	OR				
5	Derive Lagrangian robot equations for a two	L3	CO2	12M	
	degree of freedom system.				
	UNIT-III				
6	It is desired to have the first joint of a six axis	L3	CO3	12M	
	robot go from initial angle of 30° to a final				
	angle of 75° in 5 seconds. Using a third order				
	polynomial, calculate the joint angle at 1, 2, 3				
	and 4 seconds.				
	OR				
7	Explain modes of robot programming.	L2	CO3	12M	
		I			
	UNIT-IV				
8	Define sensors. Explain any two proximity	L2	CO4	12M	
	sensors with neat sketches.				
OR					
9	a) Suggest some sensors which are used in	L3	CO4	8M	
	industrial robot with respect to specific				
	automobile assembly unit.				
	b) Explain any one position sensor.	L2	CO4	4M	

	UNIT-V				
10	a)	Discuss briefly about the robot inspection.	L2	CO5	6M
	b)		L2	CO5	6M
	U)	Explain the application of robot loading	LZ	COS	OIVI
		and unloading with neat diagram.			
	OR				
11	a)	What are the features of the spray	L2	CO5	6M
	·	painting robot?			
	b)	Explain the application of robot material	L2	CO5	6M
		handling with neat diagram.			